Variation of the Alexander?Conway polynomial under Dehn surgery
نویسندگان
چکیده
منابع مشابه
Reducible Dehn Surgery and Annular Dehn Surgery
Let M be a compact, orientable, irreducible, ∂-irreducible, anannular 3manifold with one component T of ∂M a torus. A slope r on T is a T isotopy class of essential, unoriented, simple closed curves on T , and the distance between two slopes r1 and r2, denoted by 4(r1, r2), is the minimal geometric intersection number among all the curves representing the slopes. For a slope r on T , we denote ...
متن کاملDehn Filling, Volume, and the Jones Polynomial
Given a hyperbolic 3–manifold with torus boundary, we bound the change in volume under a Dehn filling where all slopes have length at least 2π. This result is applied to give explicit diagrammatic bounds on the volumes of many knots and links, as well as their Dehn fillings and branched covers. Finally, we use this result to bound the volumes of knots in terms of the coefficients of their Jones...
متن کاملextensions of some polynomial inequalities to the polar derivative
توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی
15 صفحه اولWord Hyperbolic Dehn Surgery
In the late 1970’s, Thurston dramatically changed the nature of 3-manifold theory with the introduction of his Geometrisation Conjecture, and by proving it in the case of Haken 3-manifolds [24]. The conjecture for general closed orientable 3-manifolds remains perhaps the most important unsolved problem in the subject. A weaker form of the conjecture [20] deals with the fundamental group of a cl...
متن کاملImmersed Surfaces and Dehn Surgery
The problem of how many Dehn fillings on a torus boundary component T of a 3-manifold M will make a closed embedded essential surface F compressible has been settled. A slope β on T is a coannular slope if it is homotopic to some curve on F . As an embedded essential surface, F can have at most one coannular slope. If F has a coannular slope β on T , then by a result of Culler-Gordon-Luecke-Sha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology
سال: 2004
ISSN: 0040-9383
DOI: 10.1016/s0040-9383(03)00084-3